Monday, August 20, 2012

Local mystery

That's odd.  I would have thought mysterious stars would all be distant objects that are hard to study, but I seem to have missed that there's something quite simple that's not understood about the sun:
The sun is nearly the roundest object ever measured. If scaled to the size of a beach ball, it would be so round that the difference between the widest and narrow diameters would be much less than the width of a human hair.
Apparently, it's not supposed to be like that, but new satellite measurements confirm its shape:
Because there is no atmosphere in space to distort the solar image, they were able to use HMI's exquisite image sensitivity to measure the solar shape with unprecedented accuracy. The results indicate that if the Sun were shrunk to a ball one meter in diameter, its equatorial diameter would be only 17 millionths of a meter larger than the diameter through its North-South pole, which is its rotation axis.

They also found that the solar flattening is remarkably constant over time and too small to agree with that predicted from its surface rotation. This suggests that other subsurface forces, like solar magnetism or turbulence, may be a more powerful influence than expected.

Kuhn, the team leader and first author of an article published today in Science Express, said, "For years we've believed our fluctuating measurements were telling us that the sun varies, but these new results say something different. While just about everything else in the sun changes along with its 11-year sunspot cycle, the shape doesn't."

No comments: