Tuesday, May 02, 2017

More than you needed to know

The BBC is running an article originally from The Conversation - all about the physics of defecation.  (There's a phrase you don't hear often in a lifetime.)  A highlight (if that's the appropriate word):
What else did we learn? Bigger animals have longer feces. And bigger animals also defecate at higher speed. For instance, an elephant defecates at a speed of six centimeters per second, nearly six times as fast as a dog. The speed of defecation for humans is in between: two centimeters per second.

Together, this meant that defecation duration is constant across many animal species – around 12 seconds (plus or minus 7 seconds) – even though the volume varies greatly. Assuming a bell curve distribution, 66 percent of animals take between 5 and 19 seconds to defecate. It's a surprisingly small range, given that elephant feces have a volume of 20 liters, nearly a thousand times more than a dog's, at 10 milliliters. How can big animals defecate at such high speed?
The answer, we found, was in the properties of an ultra-thin layer of mucus lining the walls of the large intestine. The mucus layer is as thin as human hair, so thin that we could measure it only by weighing feces as the mucus evaporated. Despite being thin, the mucus is very slippery, more than 100 times less viscous than feces.
During defecation, feces moves like a solid plug. Therefore, in ideal conditions, the combined length and diameter of feces is simply determined by the shape of one's rectum and large intestine. One of the big findings of our study was that feces extend halfway up the length of the colon from the rectum.
Putting the length of feces together with the properties of mucus, we now have a cohesive physics story for how defecation happens. Bigger animals have longer feces, but also thicker mucus, enabling them to achieve high speeds with the same pressure. Without this mucus layer, defecation might not be possible. Alterations in mucus can contribute to several ailments, including chronic constipation and even infections by bacteria such as C. difficile in the gastrointestinal tract.

No comments: