Quite a good article here explaining a recent paper that compared the rate of acidification 55 million years ago during one gigantic natural disaster to the current circumstances.
Here's a key paragraph:
Ridgwell and Schmidt found that ocean acidification is happening about ten times faster today than it did 55 million years ago. And while the saturation horizon rose to 1,500 meters 55 million years ago, it will lurch up to 550 meters on average by 2150, according to the model.Ocean acidification skeptics from Plimer down are always arguing that the oceans didn't die when CO2 was much higher than today. The answer to that point is again explained clearly in the article:
The PETM was powerful enough to trigger widespread extinctions in the deep oceans. Today’s faster, bigger changes to the ocean may well bring a new wave of extinctions. Paleontologists haven’t found signs of major extinctions of corals or other carbonate-based species in surface waters around PETM. But since today’s ocean acidification is so much stronger, it may affect life in shallow water as well. “We can’t say things for sure about impacts on ecosystems, but there is a lot of cause for concern,” says Ridgwell.
A hundred million years ago, there was over five times more carbon dioxide in the atmosphere and the ocean was .8 pH units lower. Yet there was plenty of calcium carbonate for foraminifera and other species. It was during this period, in fact, that shell-building marine organisms produced the limestone formations that would eventually become the White Cliffs of Dover.
But there’s a crucial difference between the Earth 100 million years ago and today. Back then, carbon dioxide concentrations changed very slowly over millions of years. Those slow changes triggered other slow changes in the Earth’s chemistry. For example, as the planet warmed from more carbon dioxide, the increased rainfall carried more minerals from the mountains into the ocean, where they could alter the chemistry of the sea water. Even at low pH, the ocean contains enough dissolved calcium carbonate for corals and other species to survive.
Today, however, we are flooding the atmosphere with carbon dioxide at a rate rarely seen in the history of our planet. The planet’s weathering feedbacks won’t be able to compensate for the sudden drop in pH for hundreds of thousands of years.
No comments:
Post a Comment