An international team has made a tantalizing discovery about the way pulsars emit radiation. The emission of X-rays and radio waves by these pulsating neutron stars is able to change dramatically in seconds, simultaneously, in a way that cannot be explained with current theory. It suggests a quick change of the entire magnetosphere....
Pulsars are small spinning stars that are about the size of a city, around 20 km in diameter. They emit oppositely directed beams of radiation from their magnetic poles. Just like a lighthouse, as the star spins and the beam sweeps repeatedly past the Earth we see a brief flash.
Some pulsars produce radiation across the entire electromagnetic spectrum, including at X-ray and radio wavelengths. Despite being discovered more than 45 years ago the exact mechanism by which pulsars shine is still unknown.
It has been known for some time that some radio-emitting pulsars flip their behaviour between two (or even more) states, changing the pattern and intensity of their radio pulses. The moment of flip is both unpredictable and sudden. It is also known from satellite-borne telescopes that a handful of radio pulsars can also be detected at X-ray frequencies. However, the X-ray signal is so weak that nothing is known of its variability.
To find out if the X-rays could also flip the scientists studied a particular pulsar called PSR B0943+10, one of the first to be discovered. It has radio pulses which change in form and brightness every few hours with some of the changes happening within about a second.
Dr Ben Stappers from The University of Manchester's School of Physics and Astronomy said: "The behaviour of this pulsar is quite startling, it's as if it has two distinct personalities. As PSR B0943+10 is one of the few pulsars also known to emit X-rays, finding out how this higher energy radiation behaves as the radio changes could provide new insight into the nature of the emission process."...
Geoff Wright from the University of Sussex adds: "Our observations strongly suggest that a temporary "hotspot" appears close to the pulsar's magnetic pole which switches on and off with the change of state. But why a pulsar should undergo such dramatic and unpredictable changes is completely unknown."
Friday, January 25, 2013
Maybe built that way?
Chameleon pulsar baffles astronomers
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment