I hadn't realised this was a contentious issue before:
Imaginary numbers are what you get when you take the square root of a negative number, and they have long been used in the most important equations of quantum mechanics, the branch of physics that describes the world of the very small. When you add imaginary numbers and real numbers, the two form complex numbers, which enable physicists to write out quantum equations in simple terms. But whether quantum theory needs these mathematical chimeras or just uses them as convenient shortcuts has long been controversial.
In fact, even the founders of quantum mechanics themselves thought that the implications of having complex numbers in their equations was disquieting. In a letter to his friend Hendrik Lorentz, physicist Erwin Schrödinger — the first person to introduce complex numbers into quantum theory, with his quantum wave function (ψ) — wrote, "What is unpleasant here, and indeed directly to be objected to, is the use of complex numbers. Ψ is surely fundamentally a real function."
Schrödinger did find ways to express his equation with only real numbers alongside an additional set of rules for how to use the equation, and later physicists have done the same with other parts of quantum theory. But in the absence of hard experimental evidence to rule upon the predictions of these "all real" equations, a question has lingered: Are imaginary numbers an optional simplification, or does trying to work without them rob quantum theory of its ability to describe reality?
Now, two studies, published Dec. 15 in the journals Nature and Physical Review Letters, have proved Schrödinger wrong. By a relatively simple experiment, they show that if quantum mechanics is correct, imaginary numbers are a necessary part of the mathematics of our universe.
No comments:
Post a Comment